Hello guest
Your basket is empty
We provide two pathways to the content. Thematic (chapters that address certain themes, e.g. cultivation, regardless of crop or animal type) and Product (chapters that relate to a specific type of crop or animal). Choose the most applicable route to find the right collection for you. 
 
Can’t find what you are looking for? Contact us and let us help you build a custom-made collection. 
You are in: All categories > A-Z Chapters > A
Use the Contact form to discuss the best purchasing method for you... Start building your collection today!

Advances in breeding techniques for durable Septoria tritici blotch (STB) resistance in cereals

Code: 9781801462990
Harsh Raman, NSW Department of Primary Industries, Australia

Chapter synopsis: Septoria tritici blotch (STB), caused by the hemibiotrophic fungus Zymoseptoria tritici, is one of the most important foliar diseases of winter cereal crops. Recent advances are helping to understand the genetic basis and architecture of resistance to STB. To date, at least 22 genes for qualitative resistance and over 200 quantitative trait loci (QTL) for quantitative resistance have been identified in cereals. This knowledge is enabling cereal breeding programs to develop varieties with more durable resistance to STB. This chapter reviews recent research on genetic resistance loci and breeding strategies based on both conventional and biotechnology-based breeding approaches (molecular marker/genomic-assisted breeding, genetic transformation, and gene-editing) to achieve achieving durable resistance to STB infection and minimise grain yield losses.

DOI: 10.19103/AS.2021.0092.12
£25.00
Quantity:
Table of contents 1 Introduction 2 Challenges in achieving durable resistance: qualitative and quantitative resistance 3 Molecular marker technologies for genetic mapping of Septoria tritici blotch resistance genes 4 Ways of increasing durability of resistance: planting of varietal mixtures 5 Ways of increasing durability of resistance: deployment of qualitative resistance genes 6 Ways of increasing durability of resistance: pyramiding of qualitative and quantitative resistance genes 7 Ways to increase durability of resistance: manipulation of plant architecture genes and deployment of multiple resistance loci 8 Marker-assisted selection (MAS) and genomic selection (GS) for Septoria tritici blotch resistance breeding 9 The use of genetic transformation and gene editing techniques 10 Conclusion and future trends 11 References

Also in A

Our site uses cookies. For more information, see our cookie policy. Accept cookies and close
Reject cookies Manage settings