Hello guest
Your basket is empty
We provide two pathways to the content. Thematic (chapters that address certain themes, e.g. cultivation, regardless of crop or animal type) and Product (chapters that relate to a specific type of crop or animal). Choose the most applicable route to find the right collection for you. 
 
Can’t find what you are looking for? Contact us and let us help you build a custom-made collection. 
You are in: All categories > A-Z Chapters > I
Use the Contact form to discuss the best purchasing method for you... Start building your collection today!

Integrating biophysical and hydraulic models to assess the agronomic and environmental impacts of precision irrigation

Code: 9781835451823
A. Daccache, University of California, USA; and J. W. Knox and T. M. Hess, Cranfield University, UK

Chapter synopsis:

Precision irrigation offers scope to save water, improve yields and support the sustainable intensification of agriculture. It could also contribute to the sector’s transformation to reduce the environmental impacts of food crop production linked to nutrient leaching and greenhouse gas emissions. Whilst many models exist to inform decision-making in irrigated production, most still ignore the fundamentally important impact that in-field heterogeneities and irrigation non-uniformity have on crop growth and productivity. Given the importance of adequate soil water for crop development and nutrient uptake, this chapter reviews current approaches to spatially simulating crop growth in-field, and the challenges of integrating biophysical and ballistics-based water distribution models to quantify the impacts of precision irrigation interventions. Different approaches (deterministic and empirical) to simulate irrigation water distribution are briefly explained, and a procedure that couples a dynamic ballistic model with a crop growth model is described.



DOI: 10.19103/AS.2023.0123.23
£25.00
Table of contents
  • 1 Introduction
  • 2 Biophysical and ballistics modelling
  • 3 Conceptual framework for modelling overhead precision irrigation impacts on crop yield
  • 4 Case study assessing impacts of precision irrigation on onions in a humid climate
  • 5 Conclusion and future trends
  • 6 Acknowledgement
  • 7 References

Also in I